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Development of flow field when a symmetrical 
underexpanded sonic jet impinges on a flat plate 

By J. IWAMOTOT A N D  B. E. L. DECKKER 
Mechanical Engineering Department, University of Saskatchewan, 

Saskatoon, Saskatchewan, Canada, S7N O W 0  

(Received 27 March 1980 and in revised form 20 April 1981) 

A differencing scheme known as the ‘Fluid-in-Cell’ method has been used in the 
numerical simulation of a choked jet of air impinging on a flat plate. Before sonic 
conditions are applied a t  the nozzle exit, the field of interest is a t  rest a t  the ambient 
pressure and temperature. The instantaneous application of sonic conditions a t  the 
nozzle exit is tantamount to the sudden appearance of a normal shock wave whose 
strength is determined by the experimental conditions. 

The results of the simulation describe the decay of the initia1 shock wave and its 
reflection a t  the plate; the formation of a second shock wave and its merging with the 
reflected shock giving rise to a detached shock wave which oscillates; and the growth 
and subsequent motion of a toroidal vortex that is generated between this shock wave 
and the plate. The results show clearly how the flow field which has been observed in 
physical experiments under stable operating conditions is developed. 

1. Introduction 
An underexpanded sonic jet is obtained when a gas is allowed to expand through a 

convergent nozzle in which the ratio of the stagnation pressure pt to  the ambient 
pressure p o  is higher than the critical pressure ratio (1.893 in case of air). The flow 
velocity is sonic a t  the nozzle exit plane, and downstream where the velocity becomes 
supersonic, the pressure decreases below that of the ambient medium. If a flat plate is 
placed normal to the jet axis a t  a certain distance from the nozzle, a detached shock 
wave is formed in front of the plate and a toroidal vortex is also formed between the 
shock wave and the plate. It is known that the shock wave oscillates along the jet axis 
and that the formation of the vortex is periodic. 

The presence of a ‘ stand-off’ shock wave ahead of a blunt body was first briefly 
described by Thompson (1964) in connection with work on resonance tubes. He found 
that the flow in front of a plugged tube was unsteady when an underexpanded sonic jet 
was directed against i t  but when a uniform supersonic jet was used the flow was stable. 
Similar observations have been made by Henderson (1966) and by Donaldson & 
Snedeker ( 197 1 ) . 

Moerch (1964) proposed a theory for the oscillation of the shock wave under stable 
operating conditions based on the method of small perturbations which gave results 
that were in reasonable agreement with experimental oscillation frequencies. How- 
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ever, his theory was one-dimensional in the sense that he considered conditions only on 
the axis joining the nozzle to the plate. 

Kukita (1975) studied the problem experimentally using schlieren optics to  reveal 
the oscillating shock wave and the flow pattern in the vicinity of an infinite plate. The 
detailed structure of the flow field could not be described quantitatively from the 
schlieren photographs as the resolution was limited by the sensitivity of the optical 
system and by the photogrammetric technique. 

Generally, experimental determination of details of the flow field in this and in 
related problems (Hartmann 1931; Iwamoto & Deckker 1979) is limited by the scale of 
the experiment and by the measuring techniques that can be employed, since not only 
is the flow non-uniform and unsteady but it is also of the mixed type in which supers0ni.j 
and subsonic regions coexist. 

A finite-difference scheme known as the ‘ Fluid-in-Cell ’ (FLIC) method has been used 
to  obtain details of the flow field starting from the instant that  sonic conditions are 
applied a t  the nozzle exit. This digerence scheme has been successfully applied to time- 
dependent compressible flows (Deckker & Yang 1975; Deckker 1979). Truncationerrors 
introduced by numerical approximations and the use of an artificial viscosity, required 
for computational stability, act to some extent like a natural viscosity and give results 
which approximate closely to the real flow. 

2. Fluid-in-cell method 
The method is fully described elsewhere (Gentry, Martin & Daly 1966) and only the 

main features of the scheme are discussed here. 
Finite-difference formulae are obtained from the laws of conservation involving the 

fluxes of mass, momentum and energy. For time-dependent axially symmetric com- 
pressible flows these are, respectively, 

(4) 
apE apuE apvE p ~ v  apu a rv  PV 

at ax ar r ax ar Y 
-+-+- +-+-+-+-= 0,  

where x and r are cylindrical co-ordinates; u, v are the x and r components of velocity. 
The energy is defined by E = I + &(u2+ v2), where I is the specific internal energy; 
P = p +q ,  where p is the thermodynamic pressure and q is an artificial viscous 
‘pressure ’ which is used to smear the shock wave and allow calculations to be made at  
the discontinuity. The use of artificial viscosity also enhances stability in the far sub- 
sonic regions of the flow. The form of q is given by 

q = hpa* ax (orbpa:), 

where a is the local acoustic velocity and h is an adjustable constant. 
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Plate 1 
FIGURE 1. Projection of flow field on (x, r)-plane and computing mesh. d = 8 mm, L = 18 mm. 

In  addition to the above equations, the equation of state for the fluid has to be 
prescribed. For a perfect gas with constant specific heats, the equation of state is 

The computing mesh is formed by dividing the region of interest into a finite number 
of cells, as shown in figure 1.  Each cell is characterized by certain average values of the 
flow variables, such as density, pressure, specific internal energy and velocity com- 
ponents. Given the initial values of these variables for each cell, and with the boundary 
conditjons prescribed, finite-difference approximations of the conservation laws pro- 
vide the means whereby the cell quantities are advanced in time through a small 
increment At. 

Firstly, cell pressures are calculated using the specified equation of state. The initial 
phase of the calculation involves the determination of provisional values of the velo- 
cities u, v and specific internal energy I ,  based on the assumption that the fluid mass in 
each cell remains fixed, that is, there is no mass flow across cell boundaries. The second 
step involves the calculation of transport effects, assuming that the mass which flows 
from cell to cell is directly proportional to the density of the donor cell (the cell from 
which the fluid is flowing). This method, called ‘donor-cell differencing ’, results in 
good stability properties in low-velocity regions, and it eliminates the possibility of a 
cell emptying itself. By applying the law of conservation of mass flow across cell 
boundaries a new value of density for each cell a t  the end of a time cycle (i.e. for t +At)  
is obtained. Finally, transport of momentum and energy are calculated from the 
conservation laws, assuming that the mass which flows across the cell boundaries 
carries with it the provisional values of the velocities and the specific energy of the 
donor cell. From the momentum and energy determined in this manner final values of 
the velocities and the specific internal energy are calculated. These calculations are 
repeated for each time cycle. 

P =  (?-l)FJI. 
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FIGURE 2. Effect of b, equation ( 5 ) ,  on pressnre distribution on axis at  
T = 0.45. -, b = 0 ;  ---, Z, = 0.3; -. -, b = 0.5. 

3. Initial and boundary conditions 
Figure 1 shows the projection on the x, r plane of the flow field under consideration. A 

volume bounded by planes containing the flat plate and nozzle exit and extending 
radially some distance from the axis of symmetry, that  is, on either side of the line 
joining the centre of the nozzle to the plate, defines the extent of the flow field. It is 
divided by annuli whose cross-sections are the uniformly rectangular cells seen in 
figure 1. 

Initially, every point in the field of interest is a t  rest a t  the pressure and temperature 
of the atmosphere. The boundary conditions are there that are no fluxes of momentum 
or energy across solid boundaries and the axis of symmetry, so that the velocity normal 
to  these boundaries must be zero. At other boundaries the required condition is tJhat 
normal space derivatives of the variables vanish. 
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Axis of symmetry 

FIGURE 3. Pressure contours behind expanding shock wave: ( a )  at r = 0.446; 
( b )  at 7 = 0.664. 

4. Results and discussion 
The diameter of the nozzle, the nozzle-plate spacing, and other physical conditions 

have been taken from Kukita (1975). The exit diameter of the nozzle is 8 mm and the 
nozzle-plate spacing 18 mm. The nozzle pressure ratio p t /po  (p t  is the jet stagnation 
pressure and po  the atmospheric pressure) is equal to 6.0, giving a shock Mach number 
N, = 1.69 a t  the nozzle exit plane and a static pressure ratio across the shock of 3.1 65. 

A value of b = 0.3 was used for the adjustable constant in calculating the artificial 
viscosity. This value was selected after examining the effect of two other values of the 
constant, b = 0 and b = 0.5, equation ( 5 ) ,  on the computed pressure distribution along 
the axis of symmetry, as shown in figure 2. 

The variables have been non-dimensionalized by using atmospheric conditions and 
the nozzle diameter as reference quantities, as appropriate. Non-dimensional time is 
expressed as r = a,t/d, where t is the time elapsed from the instant when sonic condi- 
tions are applied a t  the nozzle exit. The development of the flow which is initiated by 
application of sonic conditions a t  the nozzle exit may be divided into two phases: a first 
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FIQURE 4. Decaying pressure behind critical shock wave on axis. ---, initial shock-wave strength ; 
0 ,  calculated results; +, results obtained by interpolation of experimental data (Sloan & 
Nettleton 1975). 

phase during which the normal shock wave formed at the nozzle exit (M, = 1.69) 
reaches the plate, expanding in the process and becoming almost spherical; and a 
second phase during which this nearly spherical shock wave is reflected a t  the plate, 
the ‘stand-off’ shock wave is formed and begins to oscillate. 

4.1. Formation of spherical shock 
In figure 3 contours of pressure a t  times r = 0.446 and 7 = 0.664 are shown and the 
changes which take place as the shock wave moves downstream are clearly seen. The 
shock front, which is initially plane and perpendicular to the axis of symmetry, becomes 
curved as time progresses. It is evident in figure 3 ( a )  (r = 0-446) that the rarefaction 
wave originating at therim of the nozzle has moved some way into the shocked gas and 
changed the shape of the shock front, except for that segment at  the axis which is still 
plane. In  figure 3 ( b )  ( r  = 0.664), however, it is seen that the entire shock front has been 
affected by the rarefaction wave and that it is now spherical over the greater portion of 
its surface, the centre of the radius of curvature being at  the intersection of the axis of 
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wave 

FIGURE 5 .  Diffracting initial shock wave : the critical shock. 

symmetry with the nozzle exit plane. The centre of the expanding shock front remains 
in this position even when the shock wave reaches the plate a t  approximately T = 1.6. 
This observation is a t  variance with the experimental results of Sloan & Nettleton 
(1975) which indicate that for an initial shock wave of the same strength (iM, = 1.69) 
the centre of the spherical shock front would be located a t  about 0.6 nozzle diameters 
downstream of the exit plane. 

Figure 4 shows the variation of the pressure ratio of the initial shock wave on the axis 
as i t  moves towards the plate. The dashed line is the pressure ratio of the initial shock 
wave of constant strength, equal to 3.165, which intersects the curve which has been 
drawn smoothly through the calculated points of decaying shock pressure ratio. The 
point of intersection demarcates the position x/d on the axis where the initial shock 
wave first begins to be affected by the rarefaction wave. It is the position of the ' critical 
shock wave' (Sloan & Nettleton 1975). Beyond this point the strength of the shock 
wavedecays a t  theaxis as the wavemovesfurtherdownstream. Thecalculatedstrengths 
of the decaying shock wave, shown by the points in figure 4, are in good agreement with 
the experimental results of Sloan & Nettleton (1975). The curve drawn through the 
calculated points coincides with that obtained by interpolating their results for two 
shock waves of initial strengths M, = 1.55 and N, = 1-92. 

Referring to figure 5, the angle cc made by the head of the rarefaction wave wit'h the 
flow direction at the critical shock position is given by (Skews 1967) 
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FIGURE 6. Pressure distribution along axis before merging of shock waves. --, 7 = 0.222; 
-.-, 7 = 0.448; -. .-, 7 = 0.863; -. . .-, 7 = 1.249; -. . .-, 7 = 1.601; ----, 7 = 1.924. 

where M ,  is the Mach number of the initial shock wave. For M, = 1.69, which is the 
initial shock strength in the present study, t,he calculated value of a is 28-6" which 
agrees closely with Skews' (1 967) experimental curve. 

Changes in pressure distribution along the axis a t  increasing times are shown in 
figure 6. After time T = 0.446 the shock wave decays quickly. It may be noted that a t  
T = 0.863 a second shock wave is beginning to form in the expansion region behind the 
initial shock wave. The initial shock wave decays continuously due to  the fact that  
rarefaction waves always catch up wit'h the shock front from behind. These waves are 
reflected from the shock front as compression waves but since the flow behind the initial 
shock is supersonic the reflected waves cannot propagate upstream and therefore 
coalesce to  form a second shock which is swept downstream. This shock becomes 
stronger as the reflected compression waves overtake it one after another. The half- 
space pressure distribution on a radial plane containing the axis of symmetry is shown 
in figure 7 for T = 1.601. The pressures shown are the calculated values a t  cell centres 
which are 0.25mm (4Ar) :above the axis of symmetry, the boundary cells being a t  
0.25 mm (+Ax) from the nozzle exit plane. On the axis itself the pressure is higher and 
a t  the plane of the nozzle exit the value ofp/po is 3.17, as in figure 6. 

4.2. ReJEection of primary shock from plate 

At approximately r = 1.6 the initial shock wave, which is by now spherical, arrives a t  
the flat plate on the axis. After reflection there, the pressure on the plate increases, 
attains a maximum a t  T = 3.683 and thereafter decreases gradually. The variation of 
pressure on the plate is shown in figure 8. 

The reflected initial shock wave propagztes upstream and the half-space pressure 
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FIGURE 8. Variation of pressure on plate at axis. 

distribution on a radial plane containing the axis of symmetry is shown in figure 9 for 
7 = 2.228. As in figure 7 the distribution has been calculated at  cell centres so that on 
the axis itself the pressures will be somewhat greater. The relative positions and pressure 
amplitudes of the reflected initial shock wave and the second shock wave may be seen 
in figure 7,  

On the axis, changes in pressure ratio after the reflected shock wave and the second 
shock wave first begin to merge a t  7 = 2.665 are shown for different times in figure 10. 
Merging of the two shock waves results in a strong shock which continues to propagate 
upstream into the supersonic jet flow but after time 7 = 6.303 it begins to weaken and 
is swept downstream. Comparison of figure 10 with figure 6 shows that in the region of 
expansion between the nozzle exit and a radial plane located at  approximately 
x/d = 1.0, near-steady conditions have been attained at  7 = 1-924 and that after this 
time the flow pattern remains essentially unchanged. 

4.3. Vortex formed in the jet between the shock and the plate 

Immediately after the reflected initial shock wave and the second shock wave merge a 
small toroidal vortex is formed near the axis of symmetry in the region between the 
merged shock wave and the plate. Figure 11 is a plot at  time 7 = 3.683 of some stream- 
lines, the merged shock wave, or ‘stand off’ shock wave, and two contact surfaces 
which have been drawn using the calculated data for the velocity vectors, for pressure 
and for changes of entropy. Although smearing by the differencing scheme makes it 
difficult to locate precisely the discontinuity, nevertheless the general features of the 
experimental flow pattern are well described. By this time (7 = 3.683) merging of the 
reflected initial shock wave with the second shock wave, which in figure 9 are seen 
approaching one another, has been completed and the contact surface is located to the 
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FIGURE 10. Pressure distribution on axis after merging of shock waves has commenced. --, 
7 = 2.665; -*-, 7 = 3.683; -. .-, 7 = 5.575; - *  * a - ,  7 = 6.303; ----, 7 = 7.758. 
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FIGURE 11. Flow field at 7 = 3.683 ---, contact surfaces. ---, streamlines; -, shock wave. 
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FIGURE 12. Velocity vector plot at  T = 7.031 with streamlines superimposed. 

right of the merged shock wave and nearer to the plate. The extended contact surface 
shown is, in fact, the envelope of the farthest positions reached by fluid particles which 
were at the nozzle exit when sonic conditions were initially applied there. Merging of 
the reflectedinitial shock wave with the second shock wave, which begins a t  T = 2.665, 
generates a rarefaction wave (Rudinger 1969) so that flow on the axis between the 
merged shock wave and plate is accelerated upstream and local flow reversal occurs. 
As successive points of superimposition move radially outward from the axis, they are 
accompanied by the continuous generation of rarefaction waves. Accordingly, flow 
reversal in the region between the merging shock waves and plate also spreads radially 
outward from the axis. The toroidal vortex which is formed when the flow first begins 
to reverse, grows as flow reversal spreads in the manner just described. A plot of 
velocity vectors a t  time T = 7.031 is shown in figure 12. From a comparison with 
figure 1 1, it is evident that the toroidal vortex has moved further away from the axis of 
symmetry. 
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FIGURE 13. Wave diagram for flow at axis. ---, contact surface; 
-, rarefaction waves; -, shock wave. 

4.4. Wave diagram forfEow on the axis 
Because of smearing i t  is difficult to obtain accurately positions of the shock wave and 
the contact surface. However, by taking average positions of the smeared dis- 
continuities on the axis a wave diagram may be drawn as in figure 13. The shock wave 
initially a t  the nozzle exit propagates downstream with slightly decreasing velocity 
as it expands and reaches the plate a t  approximately 7 = 1.6. Meanwhile, the second 
shock wave forms behind the primary shock a t  the approximate position xld = 0.9 and 
moves downstream. This shock wave is actually left-running but because the flow up- 
stream is supersonic i t  cannot propagate in that direction and consequently is swept 
downstream and merges with the reflected initial shock wave. It is not a collision and 
merging produces a single strong shock wave, the process being accompanied by the 
continuous generation of rarefaction waves a t  successive points of superimposition. 

The head of this rarefaction wave arrives at the plate a t  an approximate time r 
= 3.683. It isdifficult todefine this time precisely because ofsmearing bythedifferencing 
scheme but its arrival signals the onset of decay of the pressure behind the reflected 
shock wave (figure 8). 

The merged shock wave moves upstream in the jet a t  nearly constant velocity until 
r = 6-303, which is also reflected in the pressure distribution shown in figure 10. At this 
instant i t  is a t  a minimum distance from the nozzle and thereafter begins to move down- 
stream. The minimum distance of approach of the merged shock wave to the nozzle 
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corresponds to  that position when the tail of the rarefaction wave reflected from the 
plate just reaches the shock which is still moving upstream. The arrival of the reflected 
rarefaction wave weakens the merged shock wave which now begins to move down- 
stream towards the plate. Also, a t  about this time the reversed flow at the axis begins 
to decrease and its velocity becomes nearly zero a t  t imer = 7.758. At this instant the 
torroidal vortex is located a t  a radial distance from the axis of 1.5 nozzle diameters. 

5. Conclusions 
Using the computational scheme known as the fluid-in-cell method, the structure of 

the flow field in the early phase of impingement of an axisymmetrical underexpanded 
sonic jet on a flat plate has been obtained. 

No experimental data are available for comparison with this phase of the develop- 
ment of the flow field but certain features which appear in flow-visualization studies 
under stable conditions are well reproduced. The results of the computer simulation 
indicate clearly how certain features which have been observed experimentally 
(Kukita 1975) arise in the flow field, such as the oscillation of the 'stand-off' shock 
wave, the periodic appearance of two contact surfaces and the growth and decay of 
the toroidal vortex. Where quantitative evaluation of the results is possible, agreement 
with experiment (Sloan & Nettleton 1975; Skews 1967)  is good; for example, the 
attenuation of the expanding primary shock wave and the angle made by the head of 
the rarefaction wave a t  the position of the critical shock. 

The authors are of the opinion that, because of very difficult experimental problems 
associated with measurements due to the limitation of the physical size of the experi- 
ment and to the nature of the flow, computer simulation is a t  present the only v'nble 
method of obtaining the quantitative and qualitative data concerning the processes 
leading to the stable resonant conditions that have been observed. 
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